ACE CAFE RADIO

    Affichage des articles dont le libellé est Toyota. Afficher tous les articles
    Affichage des articles dont le libellé est Toyota. Afficher tous les articles

    samedi 16 novembre 2013

    Neo-Classic: A Turbo-Swapped ’71 Celica


    We love classic cars. We love their engines, their styling, their smell – and their character. Whether you currently own a vintage car, are planning to buy one, or have just dreamed about it, I think we can all agree that the cars of yesterday offer something that you just can’t find in today’s high tech machines.
    Larry_Chen_green_celica_1971-2
    In the world of our car hobby, there are few things more rewarding then finding an old beat-up vehicle and breathing new life into it. It’s the kind of thing lots of car enthusiasts live for. Whether it’s some simple refreshing to get an old car back on the road, or tearing one down for a complete rebuild, a classic car represents a wealth of opportunities depending on your budget, spare time, and mechanical ability.
    Larry_Chen_green_celica_1971-13
    But as with any car project, there are some questions that need to be answered before the wrenches start turning. What do you want from your classic car? A factory restoration is the most traditional choice. It will probably be most beneficial to the car’s value, and there’s always something to be said for a period correct throwback to the way motoring was done in the past.
    Larry_Chen_green_celica_1971-38
    But if you go this route, there are going to be some drawbacks. Even with a full restoration, your old car will still drive like, well, an old car. Acceleration, braking, handling, fuel economy and reliability may seem very lacking, especially to someone who is used to driving newer, more technologically-advanced automobiles.
    Larry_Chen_green_celica_1971-3
    So in that case, you might instead to choose to completely modify your vintage car. Whether you’re driving on the street or race track, you can go for a modern engine swap, upgrade the suspension and install bigger brakes with large wheels and tires and so forth. If you do things right, you’ll have a classic car that drives like something a lot newer.
    Larry_Chen_green_celica_1971-14
    But then again, is the car really a classic at that point? It might look like one, but some might say that if you wanted the performance and reliability of a new car, you should have just gone and bought one. I love a thoroughly modernized classic, but I do agree that having all the high tech bits takes some of the adventure out of things.
    Larry_Chen_green_celica_1971-8
    PRESENTATION MODE
    DOWNLOAD WALLPAPER
    SHARE
    The challenge then, is to try and find the middle ground. A classic car that can be improved in the right areas without taking away all the stuff that made us fall in love with it in the first place. The 1971 Toyota Celica you see here is a perfect example of this.
    Larry_Chen_green_celica_1971-15
    The car is owned by Southern California’s Jorge Aguilera, and when I saw it at Toyotafest in Long Beach this year I fell in love with it. It was the complete package, and after a few seconds of surveying its eye-catching green bodywork and mechanical bits I knew we had a feature car on our hands. A call was made to Larry Chen and now we have the images you see here.
    Larry_Chen_green_celica_1971-41
    Jorge is part of a tight-knit group of SoCal Toyota enthusiasts, and he’s owned the Celica for seven years now. When he first brought the old Toyota home, his wife wasn’t too pleased (I think we’re all familiar with that), but in the time since, he’s created what is surely one of most impressive first generation Celicas this side of Tokyo.
    Larry_Chen_green_celica_1971-37
    The Celica was a big deal when it went on sale in the United States during 1971. It offered the scaled-down looks of a Camaro or Mustang, sports car moves and the fuel economy and reliability that Japanese imports were quickly becoming known for. It also turns out that these early model Celicas would be the best looking of the bunch – before ‘the man’ intervened with his 5mph crash laws and the gigantic bumpers that came with them.
    Larry_Chen_green_celica_1971-9
    In addition to having those great first year lines, Jorge also outfitted the body of his Celica with a few period correct modifications that make a big difference to the look. There’s a subtle front chin spoiler and a set of Japanese market fender mirrors…
    Larry_Chen_green_celica_1971-12
    … along with set of over fenders that give the svelte Celica just the right amount of 1970s toughness. Combine that with the paintwork done by Jorge’s close friend Sid and you’ve pretty much got the perfect exterior.
    Larry_Chen_green_celica_1971-19
    PRESENTATION MODE
    DOWNLOAD WALLPAPER
    SHARE
    But it’s not just the exterior that makes this car so good. In North America, the early Celicas were only offered with single overhead cam engines that, while decent for their time, paled in comparison to the more exotic DOHC engines available in Japan.
    Larry_Chen_green_celica_1971-22
    This wouldn’t be the last time American market cars got the short end of the stick when it came to engine choices, but no problem though because like many old school Toyota enthusiasts, Jorge swapped in a twin cam 18R-G motor that made the Daruma Celica such a hit in Japan.
    Larry_Chen_green_celica_1971-20
    But he didn’t stop there. For some extra power, he outfitted the 18-RG with a T3/T4 turbocharger with a custom piping and intercooler set-up. While this doesn’t make the Celica a wheel stander or tire destroyer, it’s still a huge improvement over what the car made from the factory.
    Larry_Chen_green_celica_1971-24
    But more importantly, I just think there’s something cool about popping the hood and seeing that old school twin cam engine with a snail attached to it. There are any number of modern Japanese powerplants Jorge could have gone with while looking for more power and reliability – but I very much like this combination. It looks like something you might have seen at at a tuning house back in the early ’80s.
    Larry_Chen_green_celica_1971-4
    The engine is mated to a five-speed transmission and to handle the additional power that the car is putting down, the rear differential has been upgraded to one from a ’79 Supra.
    Larry_Chen_green_celica_1971-25
    Inside the car, you’ll find the same great balance of classic style and functional upgrades – and that’s a good thing because first generation Celicas had interiors that looked just as cool as their bodies.
    Larry_Chen_green_celica_1971-26
    For the most part everything looks pretty original here, but Jorge has made a few changes…
    Larry_Chen_green_celica_1971-27
    … like installing a pair of bucket seats from an ’85 Supra that have been convincingly reupholstered to match the rest of the cockpit.
    Larry_Chen_green_celica_1971-30
    There are other little things like carbon fiber trim and extra gauges to keep an eye on the turbocharged engine…
    Larry_Chen_green_celica_1971-32
    … but by and large, that great nostalgic feel of a 1970s Japanese car has been kept intact.
    Larry_Chen_green_celica_1971-10
    PRESENTATION MODE
    DOWNLOAD WALLPAPER
    SHARE
    Finally, we have the wheel and tire set-up. I can’t tell you how many times I’ve seen a cool vintage car that’s been visually ruined by having a set of modern oversized wheels with low profile tires. It’s a look that can work sometimes, but it takes some effort.
    Larry_Chen_green_celica_1971-11
    Thankfully Jorge doesn’t have that problem, because he went with a very period-correct wheel choice. Those are RS Watanabes measuring 13″x8.5 in the front and 13″x9.5 in the rear.
    Larry_Chen_green_celica_1971-17
    Combine the timeless Watanabes and those flares with meaty 13″ tires and you’ve got a look that could’ve come straight from the grid at Fuji Speedway in the early ’70s.
    Larry_Chen_green_celica_1971-5
    As for future plans, Jorge is planning to go through the Celica’s suspension and also to eventually build a new motor for it.
    Larry_Chen_green_celica_1971-1
    Whatever he plans to do though, you can rest assured that the car will not stray from its perfect blend of old and new.
    Larry_Chen_green_celica_1971-42
    This Celica is not an exact recreation of something that rolled off the assembly line in 1971, nor is it a modern performance car wrapped in a vintage body. It’s somewhere right in the middle, and that’s what makes it so special.



    samedi 6 avril 2013

    Four-Wheel-Drive vs All-Wheel-Drive



    By BEN BOWERS
    Photo by BEN BOWERS & SHAWN PARKIN









    Four-wheel-drive used to be synonymous with mullets off-roading 
    in the minds of most consumers. Like many buzz-worthy specs originally developed for enthusiasts and professionals, though, some variant of the general principle was soon rushed into vehicles of all stripes by manufacturers. It’s a shift Muddin’ diehards still cuss about over tallboys at dusk, but there’s no denying that a new generation of a sure-footed cars with better handling in tricky conditions has benefited drivers everywhere.
    Today, finding the perfect match between driving ability, fuel consumption and price first requires an honest evaluation of your own motoring needs. With that soul-searching behind you, understanding the differences between various four-wheel-drive (4WD) and all-wheel-drive (AWD) offerings (and everything in between) will make buying your next ride that much easier.

    Know Your Terms: Torque, Traction, Wheel Slip and Traction Control

    know-you-terms-header
    Loosely speaking (in automotive terms), torque is the twisting force produced by a car’s engine. Torque is multiplied and split up between wheels by various gears in the transmission and differentials, which send torque from the driveshaft or transmission to the drive wheels. Applying torque to the wheels is what moves your car from the nail salon to the yoga studio next door on Sunday afternoons (you thought we didn’t notice); granted, there’s a force — a.k.a friction — that prevents your tires from simply slipping along the road. That last bit is important, because it illustrates the relationship between friction, traction and torque. Friction is required for traction, and traction is required to harness torque. The most powerful engine in the world won’t move you an inch if your tires lack traction. Wheel slip results when the torque applied to a tire exceeds its available traction (often, at red-light drag races).
    Traction control is one innovation that has helped limit tire slip in modern vehicles — even the two-wheel-drive variety. This technology leverages the same sensors used by anti-lock braking systems to measure wheel speed and determine whether any wheel under power has lost traction. Remember, if the amount of torque sent to a wheel exceeds the friction it has with the road, it’ll slip. By braking select wheels when slipping is detected, these systems can limit the amount of torque sent to a wheel and reduce wheel slip in the process. In certain cases, reducing engine power to slipping wheels is also required to get things under control. Traction control systems are unquestionably beneficial, but it’s important to remember that they only work to prevent wheels from spinning and can’t actually increase traction. That’s where 4WD and AWD come in.

    The Purpose and Shortcomings of “Open Differentials”

    Before diving into the benefits of pushing power to all four wheels of a vehicle, it’s important to first understand how the two-wheel-drive systems found on most cars work and where they fall short. When a vehicle is in motion, its wheels rotate at different speeds when making turns. This is because the inside wheels travel a shorter distance during a turn than the outside wheels. The front wheels and back wheels likewise travel at different distances and speeds in turns. This simple fact of physics poses a problem for wheels under power from the engine, since the left and right wheels are linked together by an axle so that the car’s engine and transmission can turn both together. A differential is a type of gearbox found on front and rear axles that deals with this issue by supplying power to a set of wheels while still allowing them to rotate at different speeds.
    An Excellent Explanation of Differentials
    Sure, it’s in that black-and-white, oft-parodied format of the “good old days”, but set aside ten minutes of your day for this video and you’ll understand differentials pretty fully, son.
    The differential found on basic two-wheel-drive vehicles is known as an “open differential”, and it distributes power across both wheels following “a path of least resistance”. This design is highly effective on typical surfaces like dry pavement, but it can result in real problems on poorer road conditions. For example, if one wheel on an axle hits a patch of ice while the other remains on dry pavement, an open differential will direct all available power down the path of least resistance, which in this scenario is the wheel with the least amount of traction. The additional torque applied to this wheel results in wheel slippage. Getting moving in these cases involves a sore back until both wheels on the axle gain traction again.

    Part-Time 4WD: There When You Need It, Not When You Don’t

    Though the name might seem counterintuitive, Part-Time 4WD is a feature found primarily on SUVs and Trucks designed to handle demanding off-road environments. Unlike Full-Time 4WD or some all-wheel-drive solutions, these systems allow drivers to normally operate the vehicle in 2WD during everyday driving scenarios (which is more fuel efficient and puts less wear and tear on the vehicle), or switch into either a 4WD high or a 4WD low gear for particularly bad traction scenarios via a selector switch. The presence of a 4WD low gear, combined with a more basic design and implementation, generally makes Part-Time 4WD a superior option to AWD alternatives when really veering off the beaten path — granted a driver knows what they’re doing.
    4WD mode works in the simplest terms thanks to a dedicated transfer case, which splits the power between the front and rear axles. Specifically, it locks the front driveshaft to the rear driveshaft, forcing equal amounts of torque from the engine to both axles, causing the front and rear axle of a car to rotate at the same speed. This provides greater traction to drivers, since it ensures power will continue to flow to the wheels on an axle with traction should wheels on the other axle slip. By the same token, though, switching back to 2WD on normal road conditions is critical to prevent potential damage from a condition known as Drive Train Binding — when a vehicle’s axles cannot rotate at different speeds to accommodate the different distances wheels travel during events like turning.
    There are several other innovations beyond simply sending power to all four wheels that enhance many Part-Time 4WD vehicle’s traction abilities by solving the woes of open differentials. A limited slip differential or LSD — not that kind, you Deadhead — is one such solution that automatically directs some available power to the path of more resistance (a.k.a the wheel that’s not slipping) to provide grip on poor roads, and it works in the background without any input from the driver. But it doesn’t prevent wheel slippage entirely.
    So-called automatic limited slip differentials (A-LSD), also known as electronic limited slip differentials (e-LSDs), are activated by drivers via a button or switch and provide the same traction benefits as a typical LSD using a different methodology with a few notable enhancements. Instead of relying on clutches to evenly distribute drive wheel power, these systems rely on the automatic intervention of the braking system to transfer power between the wheels. But unlike basic traction control (mentioned earlier), A-LSDs also don’t require a reduction in engine power to work and can shift power back and forth from the left and right wheels as each wheel’s level of traction varies.
    Locking differentials kick things up a notch further by allowing users to manually activate a locking mechanism inside the differential. A locked differential forces each wheel on an axle (vs. just the axle as is the case in basic Part-Time 4WD) to rotate at the same speed, no matter their tractional differences, which gives a wheel that may have more traction a better chance of freeing the driver from a slippery situation.
    PART-TIME 4WD:
    PROS
    • Gives traction when needed, while switching to 2WD improves fuel economy and reduces wear on the drivetrain in normal conditions.
    • Since it’s generally less complicated and of an older design from an engineering standpoint compared to other systems, it’s easier to build and therefore less expensive, lowering initial purchase cost. Its simplicity also tends to make it more rugged.
    • In extremely difficult terrain, drivers can engage an extra-low 4WD gear for improved torque.
    • LSDs, A-LSDs and locking differentials act as the ultimate trump card in poor conditions by better directing engine power from “wheels that slip, to wheels that grip”.
    CONS
    • Doesn’t provide extra traction and handling improvements in everyday driving situations.
    • A driver has to actively turn on 4WD to take advantage of it and remember to turn it off after.
    • Creates the potential for uneven tire wear.
    • Inspires drivers to foolishly believe they can drive anywhere.
    4x4xToyota
    Recently, Toyota invited us to snowy Breckenridge, CO to check out their full line of crossovers and SUVs — giving us a unique opportunity to test out a variety of drive train setups and see how everything — from the mid-sized cross-over Venza to the beastly Land Cruiser — handled the same snowy scenario, both on typical roads as well as a few intentional and unintentional excursions off the beaten path. Here, we’ve called out examples of various drive train layouts available throughout the Toyota line to illustrate the wide range of choices on the market today.
    toyota-4-runner-sidebar-4Runner
    Key Available Features: Part-Time 4WD w/Active Traction Control (A-TRAC) w/ Locking rear diff., or Full-Time 4WD system featuring A-TRAC & a Torsen 12 limited-slip center differential with locking feature.
    Comfortable, powerful and spacious enough for any size adventure, we love it for its rugged chops, bulletproof reliability and chiseled looks. Its available full-time 4WD system is one of the most advanced on the planet for an SUV of its size, and is fully capable of tackling off-pavement recreational activities with ease. $31,000+
    toyota-land-cruiser-sidebar-
    Land Cruiser
    Key Available Features: Full-Time 4WD, Torsen limited-slip diff., Crawl Control, Off-road Turn Assist
    Its legacy in the off-roading world is unparalleled, though recent models have focused more on commuting than Safaris. Still, it offers advanced off-roading enhancements that few cars can match such as Multi-terrain Monitors for viewing the surrounding ground via front, rear and side cameras, as well as Multi-terrain Select, which optimizes a driver’s control over wheel spin and brake lockup over various selectable off-road surface types such as sand, mud and snow $79,550+
    toyota-sequoia-sidebar-gear-patrol
    Sequoia
    Key Available Features: Multi-Mode 4WD, a Torsen limited-slip center differential with locking feature or Automatic Limited-Slip Differential (Auto LSD)
    This full-sized SUV offers plenty of room for gear or people thanks to its available seating for 8 — making it an ideal people hauler around town or a versatile excursion vehicle. Its Multi-Mode 4WD smartly optimizes for both scenarios, switching between 2WD for fuel efficiency or 4WH/4WL when it’s time to leave the pavement. $42,455+
    toyota-rav-4-sidebar-gear-patrolRAV4
    Key Available Features: All-Wheel-Drive with Dynamic Torque Control
    Toyota’s compact entry in the SUV space is built to deal with the space-constrained reality of the city while still providing room for four. Its AWD is geared more towards improved handling and control through corners, but it’ll still navigate poor weather conditions for a safe ride home. $23,300+

    Full-Time 4WD: Where Convenience Meets Power

    Though “full time” in your vernacular might translate to a mere 40 hours of pantless self-portraits on the company photocopier, in the case of 4WD systems it means some portion of the engine’s power is spread across each of the wheels, all of the time. These systems are becoming increasingly popular in SUVs and unlike the Part-Time 4WD systems mentioned above, they eliminate the risk of drive train binding thanks to a center differential, which allows each of the vehicle’s axles to receive at least some amount of power at all times and still rotate at different speeds during a turn. While Full-Time 4WD systems are convenient (since all of the wheels are always under some degree of power without any action from the driver), they still have faults. Fuel economy naturally takes a hit, and there is inherent wear on the drive train. Just like a heavyset high roller in Vegas buying drinks for any female in a 30 yard radius, Full-time AWD continues to shower each of the wheels with some portion of power, even those without a snowball’s chance in hell of gaining traction.
    Some center differentials boast a locking feature to partially overcome this problem, which splits engine power equally between the front and rear axles (not the wheels, as with a locking differential on Part Time 4WD vehicles mentioned above). A full-time 4WD car with a locked center differential thus behaves in many ways like a Part-Time 4WD vehicle in 4WD.
    A Torsen limited slip center diff. does an even better job of putting power where it’s most needed in Full-Time 4WD vehicles. It features a unique gearset that locks if it senses a torque imbalance between a vehicle’s two axles and then transfers power to the axle with traction. The particular ratio of power that a Torsen can shift between the front and rear axles varies. In the case of Toyota’s vehicles, it can direct up to 53% of available engine power to the front axle if the rear starts spinning. If it’s the front wheels that are spinning on the other hand, up to 71% of all engine power can shift to the rear axle to get you and backseat full of sugared-up kids out of a jam.
    FULL-TIME FOUR-WHEEL DRIVE
    PROS
    • Gives drivers added traction and improved handling in all driving situations, without the risk of drive train binding.
    • It’s always on and doesn’t require any action from the driver.
    • Systems equipped with Torsen center diffs are the ultimate solution for putting engine power where it’s needed most, lowering the risk of getting stuck even further.
    CONS
    • It’s less fuel efficient and puts more wear on a vehicle’s drive train.
    • Often requires advanced drivetrain equipment that can increase initial vehicle cost relative to more basic 4WD systems.
    • They’re generally more prone to damage compared to simpler, more rugged Part-Time 4WD systems.
    • Inspires drivers to believe they can drive anywhere.

    Full-Time 4WD Multi-Mode: A Chance for Compromise

    Full-Time 4WD Multi-Mode systems can operate in full-time 4WD mode, just like other Full-Time 4WD systems. Drivers have the added bonus, though, of switching to 2WD when additional traction isn’t necessary. This system is generally harder to find, and is usually only used on higher-end SUVs.
    FULL-TIME 4WD MULTI-MODE
    PROS
    • Gives drivers added traction and improved handling in all driving situations if desired, but it can be turned off should fuel economy and drivetrain wear be a concern.
    CONS
    • Often requires advanced drivetrain equipment that can increase cost relative to more basic 4WD systems.
    • They’re generally more prone to damage compared to simpler Part-Time 4WD systems and more expensive compared to regular Full-Time 4WD systems.
    • Available on only a limited number of typically lower-powered vehicles.
    • Inspires drives to believe they can drive anywhere.

    AWD

    The most basic definition of an all-wheel-drive vehicle is one that can send some percentage of engine power to the non-primarily powered wheels when needed. (Today, this is an oversimplification for most new cars driving off of the lot, but we’ll go with it for clarity’s sake.) AWD systems were originally made popular by European sports cars in the ’80s after drivers found their added road grip boosted handling. The most basic implementations are usually found on front-wheel-drive cars, though this is far from being always the case.
    Today, AWD is available on all kinds of vehicles and offers many of the benefits provided by more traditional 4WD systems. But this isn’t a “Potato” “Po-tah-to” situation, and they aren’t the same thing. Mechanically, AWD systems incorporate a front differential, center differential and the transfer case into one compact component, which makes it more suitable in smaller, lightweight vehicles with lower levels of ground clearance. Despite the “All” terminology, cars with basic AWD still typically send the majority of power only to one axle. For example, in the case of the Porsche 911, only 5% is typically pushed to the front axle while 95% is directed to the rear. In these cases, a series of sensors monitor wheel slip and automatically shift power to wheels where there is no slippage, without any action need from the clueless driver screaming Katie Perry at the top of their lungs.
    The best AWD systems leverage software and wheel sensors to detect wheel slip as fast as possible. They then react by activating traction control to reduce or eliminate wheel slip while re-routing engine torque to the wheel with the best grip on the road. AWD with dynamic torque control found on cars like the Toyota RAV4 are a riff on this theme and utilize an electro-magnetic coupler or (ECU). During normal driving, the RAV4 defaults to front-wheel-drive for improved fuel economy while still sending power to rear wheels during turns for improved cornering and driving performance (up to a maximum of 45% rear and 55% front torque distribution.)
    Lock mode, on the other hand, essentially acts like Full-Time FWD on the RAV4 at speeds below 25 MPH by directing 50% of engine power to the rear wheels. Sport Mode provides smoother torque transfers between the front and rear wheels to improve steering by maximizing the traction of each wheel. Braking in a straight line is also enhanced in this mode by stopping torque to the rear wheels, allowing ABS and vehicle stability control to work unmolested.
    While it’s somewhat of a sweeping statement, AWD systems generally excel at “all-weather” driving, not “all-terrain” driving.
    ALL-WHEEL-DRIVE
    PROS
    • Gives drivers added traction and improved handling in all driving situations if desired.
    • It’s always on and doesn’t require any action from the driver.
    • Available on a wide range of vehicles beyond trucks and suvs.
    CONS
    • A lack of a transfer case means engine torque cannot be geared down to a very low range for rigorous off-roading.
    • Compared to other systems, it’s less adept at pinpointing power to the wheels that grip v. the wheels that slip.

    Real World Performance and Finding the Right System for You

    Understanding the science and engineering behind each of these systems is informative, but no amount of book smarts can replace a test drive to discern what system is right for you. Our recent experience with Toyota’s entire cross-over and SUV lineup in Breckenridge made it abundantly clear that competent drivers armed with even basic AWD can comfortably navigate less than ideal road conditions — and we didn’t even follow a cardinal rule of using snow tires. AWD cars can manage the slushy terrain to the local Starbucks just as competently as the mighty Canyonero and save fuel in the process. In short, justifying the expense of Full-time or Part-time 4WD over more basic AWD options simply as a necessity for “surviving” your neighborhood makes much less sense than it used to.
    There are obviously adventurous lifestyles and harsher environments where owning a more robust system is a reasonable investment, though. The 4WD solutions found on true SUVs (your Aztec doesn’t count) are all capable of pushing drivers well beyond the paved safety of Main Street. But while their advanced drive train systems and various enhancements like Hill-start Assist Control (HAC), Downhill Assist control (DAC) and Crawl control are taking more of the hassle out of going off road, they should never override common driving sense. Driver experience and competence is still the biggest single factor in avoiding disaster. No option package or a decal on the bumper will ever change that fact.
    Some point out that when it comes to buying a car, it’s hard to put a price on the single moment where a good traction system could save your bacon from a bad situation — and for the most part, we’d agree. You can’t put a price on safety, but shelling out isn’t a get-out-of-a-ditch-free card either. Your first concerns should center around driving ability, size, fuel efficiency and creature comforts. Only once the field is narrowed should you consider the various drive train options available and start the honest conversation of “Is it worthwhile?” No matter what you wind up picking, our advice is to study up on good winter driving skills, focus on regular maintenance, and work on improving your decision making behind the wheel first. After all, at the end of the day, it’s the man behind the machine, not the other way around.
    from GEAR PATROL